Hybrid Multi-level Intrusion Detection System

نویسندگان

  • Sahar Selim
  • Mohamed Hashem
  • Taymoor M. Nazmy
چکیده

Intrusion detection is a critical process in network security. Nowadays new intelligent techniques have been used to improve the intrusion detection process. This paper proposes a hybrid intelligent intrusion detection system to improve the detection rate for known and unknown attacks. We examined different neural network & decision tree techniques. The proposed model consists of multi-level based on hybrid neural network and decision tree. Each level is implemented with the technique which gave best experimental results. From our experimental results with different network data, our model achieves correct classification rate of 93.2%, average detection rate about 95.6%; 99.5% for known attacks and 87% for new unknown attacks, and 9.4% false alarm rate. Keywords-component; network intrusion detection; neural network; Decision Tree; NSL-KDD dataset

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

A hybrid approach for database intrusion detection at transaction and inter-transaction levels

Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011